Human postural responses to different frequency vibrations of lower leg muscles.

نویسندگان

  • A Polónyová
  • F Hlavacka
چکیده

We analyzed human postural responses to muscle vibration applied at four different frequencies to lower leg muscles, the lateral gastrocnemius (GA) or tibialis anterior (TA) muscles. The muscle vibrations induced changes in postural orientation characterized by the center of pressure (CoP) on the force platform surface on which the subjects were standing. Unilateral vibratory stimulation of TA induced body leaning forward and in the direction of the stimulated leg. Unilateral vibration of GA muscles induced body tilting backwards and in the opposite direction of the stimulated leg. The time course of postural responses was similar and started within 1 s after the onset of vibration by a gradual body tilt. When a new slope of the body position was reached, oscillations of body alignment occurred. When the vibrations were discontinued, this was followed by rapid recovery of the initial body position. The relationship between the magnitude of the postural response and frequency of vibration differed between TA and GA. While the magnitude of postural responses to TA vibration increased approximately linearly in the 60-100 Hz range of vibration frequency, the magnitude of response to GA vibration increased linearly only at lower frequencies of 40-60 Hz. The direction of body tilt induced by muscle vibration did not depend on the vibration frequency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human postural response to lower leg muscle vibration of different duration.

Body lean response to bilateral vibrations of soleus muscles were investigated in order to understand the influence of proprioceptive input from lower leg in human stance control. Proprioceptive stimulation was applied to 17 healthy subjects by two vibrators placed on the soleus muscles. Frequency and amplitude of vibration were 60 Hz and 1 mm, respectively. Vibration was applied after a 30 s o...

متن کامل

Muscle synergies characterizing human postural responses.

Postural control is a natural behavior that requires the spatial and temporal coordination of multiple muscles. Complex muscle activation patterns characterizing postural responses suggest the need for independent muscle control. However, our previous work shows that postural responses in cats can be robustly reproduced by the activation of a few muscle synergies. We now investigate whether a s...

متن کامل

Velocity of body lean evoked by leg muscle vibration potentiate the effects of vestibular stimulation on posture.

To investigate the vestibular and somatosensory interaction in human postural control, a galvanic vestibular stimulation of cosine bell shape resulting in a small forward or backward body lean was paired with three vibrations of both soleus muscles. The induced body lean was registered by the position of the center of foot pressure (CoP). During a quiet stance with eyes closed the vibration of ...

متن کامل

The Effect of Fatigue on the Postural Balance of Young Women Using Electromyography of Lower Extremity Muscles

Objective: This study aimed to examine the effect of fatigue on postural balance of young women using Electromyography (EMG) of lower extremity muscles and measuring the foot plantar Center of Pressure (COP) displacement. Methods: Participants were 10 young women (mean age, 26.4±3.01 years; mean weight, 65.5±5.75 kg; mean height, 165±2.61; BMI, 24.08±2.08 kg/m2) with no history of lower limb i...

متن کامل

Common muscle synergies for control of center of mass and force in nonstepping and stepping postural behaviors.

We investigated muscle activity, ground reaction forces, and center of mass (CoM) acceleration in two different postural behaviors for standing balance control in humans to determine whether common neural mechanisms are used in different postural tasks. We compared nonstepping responses, where the base of support is stationary and balance is recovered by returning CoM back to its initial positi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological research

دوره 50 4  شماره 

صفحات  -

تاریخ انتشار 2001